Install and Run
Install
use conda to install the environment
$ git clone git@github.com:zzheng93/UrbanClimateExplorer.git
$ cd ./UrbanClimateExplorer/binder
$ conda env create -f environment.yml
$ conda activate aws_urban
Run
Locally
$ cd ./UrbanClimateExplorer $ git pull $ cd ./docs/notebooks $ jupyter notebook
HPC (e.g., NCAR’s Casper clusters with a GPU)
First, create a bash script (see below), and name it as
aws_urban_env.sh
, put it in the same folder with yourUrbanClimateExplorer
folder.#!/bin/bash source /glade/work/zhonghua/miniconda3/bin/activate aws_urban echo "ssh -N -L 8889:`hostname`:8889 $USER@`hostname`.ucar.edu" jupyter notebook --no-browser --ip=`hostname` --port=8889
Second, run the commands below
Note: please use
your own job code
instead of “UIUC0021”. You can find more information aboutexeccasper
here$ execcasper -A UIUC0021 -l gpu_type=v100 -l walltime=06:00:00 -l select=1:ncpus=18:mpiprocs=36:ngpus=1:mem=100GB $ bash aws_urban_env.sh
Thrid, launch a new terminal, copy and paste the command printed by the “echo” command, and log in. Then open your browser (e.g., Google Chrome), type
https://localhost:8889
.Note: Sometimes port
8889
may be used by others. In this case, please adjust your bash script accordingly, e.g., from8889
to8892
:#!/bin/bash source /glade/work/zhonghua/miniconda3/bin/activate aws_urban echo "ssh -N -L 8889:`hostname`:8892 $USER@`hostname`.ucar.edu" jupyter notebook --no-browser --ip=`hostname` --port=8892